Original Article
Making Nutrition a Development Priority in Africa
Making Nutrition a Development Priority in Africa
Contents lists available at

...
Journal homepage: https://www.najfnr.org
Journal homepage: https://www.najfnr.org
Viability of Lactic Acid Bacteria in Different Components of Ogi
 ith Anti diarrhoeagenic

Activities

Roseline
elejo

kwasi 1

Iyanauoluwa

Gladys AREMU

1
Qudus Olamide DOSUNMU

Funmilola A. AYENI
Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria.
A B S T R A C T

-
Article history: Received 03 August
Accepted 27 November 2019
Background:
Ogi constitutes a rich source of lactic acid bacteria (LAB) with associated health benefits to humans through antimicrobial activities. However, the high viability of LAB in Ogi and its supernatant (Omidun) is essential.

Aims:
This study was carried out to assess the viability of LAB in various forms of modified and natural Ogi and the antimicrobial properties of Omidun against diarrhoeagenic E. coli.
Methods and Material:
The viability of LAB was assessed in fermented Ogi slurry and Omidun for one month and also freeze-dried Ogi with and without added bacterial strains for two months. A further 10 days viability study of modified Omidun, refrigerated Omidun, and normal Ogi was performed. The antimicrobial effects of modified Omidun against five selected strains of diarrhoeagenic E. coli (DEC) were evaluated by the co-culture method.

Results:
Both drying methods significantly affected carotenoids and phenolic compounds. The Ogi slurry had viable LAB only for 10 days after which, there was a succession of fungi and yeast. Omidun showed 2 log 10 cfu/ml reduction of LAB count each week and the freeze-dried Ogi showed progressive reduction in viability. Refrigerated Omidun has little viable LAB, while higher viability was seen in modified Omidun (≥2 log cfu/ml) than normal Omidun.

Conclusions:
The consumption of Ogi should be within 10 days of milling using modified Omidun.
There are practical potentials of consumption of Omidun in destroying E. coli strains implicated in diarrhea.

Keywords:
- Ogi
- Omidun
- lactic acid bacteria, diarrhoeagenic Escherichia coli strains, Viability

INTRODUCTION
Fermentation preserves foods by converting carbohydrates to alcohol and organic acids [1]. Microbes such as lactic acid bacteria (LAB) are involved in natural fermentation processes that produce fermented foods [2, 3]. The influences of the fermentation microbes on the nature of the food and their antimicrobial properties are well characterized [4-6]. Aderiye et al. [7] described the use of fermented cereals as foods with enhanced health properties e.g. hypolipidemic, hepatoprotective, antibacterial, and treatment of gastroenteritis in man and animals.

WHO [8] described probiotics as "live microorganisms which when administered in adequate amounts confer a health benefit on the host" i.e. viability and consumption of sufficient numbers are an inherent property of probiotics. One of the best uses for probiotics is the reduction of infectious diarrhea and diarrhea associated with antibiotic use.

Probiotics shorten diarrhea episodes. Diarrhoeagenic Escherichia coli strains are among the commonest causative agents of diarrhea and are divided into enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), and enteroaggregative E. coli (EAEC).

Some developing countries, such as
Nigeria, are still struggling against increasing morbidity and mortality of diarrhea infections in young children. Different home remedies are usually employed to combat diarrhea menace. The use of Omidun (the supernatant on Ogi) constitutes an example.

Ogi is a fermented cereal gruel widely consumed in Western Nigeria in breakfast and in traditional infant weaning food [9]. Aderiye and Laleye [10] stated that although some communities in south-western Nigeria administered uncooked Ogi to people with diarrhea to reduce the frequency of stooling, the scientific proof for this claim is lacking.

Several authors have described functional, nutritional and antibacterial properties of Ogi [11-15], but there is insufficient data on the viability of LAB in different components of Ogi over a period of time. Therefore, this study was designed to study the component of Ogi that has the most viable LAB over a period of time and the antimicrobial properties of Omidun against different strains of diarrhoeagenic Escherichia coli.

MATERIAL AND METHODS

Bacterial strains

Diarrhoeagenic E. coli strains

All diarrhoeagenic strains of E. coli were obtained from the Molecular Microbiology Unit, Department of Pharmaceutical Microbiology, Faculty of Pharmacy.
University of Ibadan, Nigeria. Five different strains of Escherichia coli (Enterohaemorrhagic E. coli (EAEC LL D 25D), Enterotoxigenic E. coli (ETEC LW D21A), Shigatoxin producing E. coli (STEC LL H74B), Enteroinvasive E. coli (EIEC LW D21E) and Enteropathogenic E. coli (EPEC LL H78D) were used for the modified Omidun co-culture experiment.

Lactobacilli strains

Two strains of already characterized LAB; Lactobacillus paraplantarum AI3, and Lactobacillus pentosus AO82 with good antimicrobial properties were obtained from the probiotic group of Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria.

Traditional fermentation of Ogi

Maize grains (Zea mays) were obtained from the Bodija market, Ibadan Oyo State Nigeria. The Ogi was prepared by fermentation of maize grains according to the traditional methods of processing as described by Afolayan et al.

In
Maize grains were soaked in clean water for 48 h at 28 ± 2°C. The fermenting water was decanted and the soften maize grains were wet milled using clean grinding machine. The paste obtained was sieved with a clean muslin cloth to remove the husks. The filtrate was allowed to settle and ferment according to the days subsequently described for each experiment. The filtrate separated into thick paste (Ogi) and watery supernatant (Omidun). The pH was evaluated for a period of 7 days.

Ogi and Omidun viability studies

On the first day of souring, 1g of Ogi slurry was obtained from the surface of Ogi (this involves lightly scraping the surface of settled Ogi in order to obtain maximum bacterial counts) and 1 ml of Omidun were appropriately diluted with 0.9% sterile normal saline and the dilutions were inoculated on MRS agar respectively [14]. All incubations were carried under micro-aerophilic conditions at 37°C for 24-48 hours. The number of colony forming units on the MRS agar were counted and identified by morphological characteristics, Gram reaction, and catalase test. The procedure was repeated weekly on Ogi slurry and Omidun for 26 days.

Freeze-dried Ogi powder viability study

The effect of freeze-drying on LAB viability in Omidun and milk was done according to a modified method of Ayeni et al [16]. Grown 24 h cultures of *Lactobacillus paraplantarum* AI3 and *Lactobacillus pentosus* AO82 respectively were centrifuged at 3000 rpm for 10 mins, washed in normal saline and then resuspended in 0.5 mL Omidun and sterile milk respectively. The resuspended pellets of the LAB in Omidun was mixed with 10 g of wet Ogi slurry.
Also the resuspended LAB in milk was mixed with 1 mL of milk for each sample. The viability counts of the mixtures were carried out before freeze drying. All the five different components (Ogi alone, Ogi + L. paraplantarum, Ogi + L. pentosus, milk + L. paraplantarum, milk + L. pentosus) were collected and freeze dried by freezing them to -20°C at atmospheric pressure then sublimed the frozen product at -20°C, which was then transferred to a condenser at low temperature and then defrost to yield a powdered product. The viability counts before and after freeze drying and also after 69 days of storage at room temperature was performed for bacterial strains vehiculated in Ogi and milk. For Ogi, the viability at 26 days was measured and then discontinued due to low survival rate of LAB.

A study on the effects of capsulation on lactobacilli vehiculated in Ogi was adapted from the viability count method of Ayeni et al. [16]. Freeze dried Ogi and milk were put in capsule shells, filled and spread over to ensure uniform filling of the capsules. The cap was fixed appropriately over the body and stored at room temperature. The viability counts of LAB in capsules versus the freeze dried products that were not stored in capsules for the Ogi products were done after three weeks of storage and the results recorded. The difference in the viability of LAB cryopreserved with milk vs. Ogi was analyzed with student t-test.
Evaluation of the viability of LAB in Ogi over a period of ten days

The results obtained from the initially described viability study made us develop a new protocol to evaluate the maximum viability of Ogi components over 10 days. Freshly prepared Ogi with Omidun [14] were divided into three sterile containers. In the first container, Omidun was changed every day and viability study was done with mixture of Omidun (removed before changing the water) and lightly scrapped surface of Ogi. This mixture is tagged ‘modified Omidun’ and 1 ml of the mixture was serially diluted and plated out on MRS agar for viability counts after incubating microaerophilically for 24-48 h. The procedure was repeated daily for 10 days. In the second container, Ogi was allowed to settle and Omidun changed daily. The surface of settled Ogi was lightly scrapped and 1 g obtained from the scrapped material was mixed in 9 ml of saline and diluted appropriately, then plated on MRS agar to get the viability counts daily for ten days. From the third container, Omidun was decanted after milling and settling, then kept in the fridge for 10 days. Analysis were done by daily removing 1 ml of the refrigerated Omidun and plating out as previously described for ten days.

Determination of the antimicrobial effect of modified Omidun on diarrhoeagenic Escherichia coli

The method of Ojo et al. [5] was used to study the antimicrobial effects of Omidun on diarrhoeagenic E. coli pathotypes. We used five different diarrhoeagenic...
E. coli strains: EAEC LLD25D, ETEC LWD21A, STEC LLH74B, EIEC LWD21E and EPEC LLH78D.

The strains were grown for 24 h in Nutrient Broth and 0.1 mL of each E. coli strains were introduced into 99.9 mL of modified Omidun mixture as previously described. One milliliter from the mixture was diluted serially in 9 mL of normal saline and plated out on MacConkey agar to get the viable counts of the E. coli strains at time zero (0 h) by incubating for 24 h at 37ºC. The remaining 99 mL mixture of modified Omidun and E. coli were incubated for 24 h at 37ºC aerobically. One milliliter from the mixture was diluted serially in 9 mL of normal saline and plated out on MacConkey agar to get the viable counts of the E. coli strains at time 24 (24 h) by incubating for 24 h at 37ºC. The control experiment involve growing the different E. coli strains in normal saline and plating out the viable cells at time 0 h and 24 h. The plates were then observed for the growth of E. coli and viable colonies counted. The results were recorded at 0 h and 24 h.

RESULTS

The pH of traditionally prepared Ogi was evaluated over 7 days as Day 1: 3.96, Day 2: 3.45, Day 3: 3.77, Day 4: 3.62, Day 5: 3.50.

Day 7: 3.98. The highest pH was 3.98 on day 7 and the lowest was 3.45 on day 2. The result of quantities of viable LAB in different components of Ogi are shown on Figures 1 to 3. There was an increase in quantity of viable LAB in Ogi slurry as the number of days increases, ranging from 8.6×10⁸ cfu/ml on day 1 of the souring period to one log increase (5.2×10⁹ cfu/ml on day 3 and further one log increase (9.7×10⁹ cfu/ml on day 10. However, after ten days, there was succession of fungi growth (Fig 1). The LAB present...
in Omidun showed viability for the four weeks duration, though with progressive reduction in quantities of viable LAB as the days from 1.25×10^7 cfu/ml on day 1 to 3.5×10^2 cfu/ml on day 27 (Fig 1).

Figure SEQ Figure 1: Viability of LAB in Omi
dun slurry and Omidun In the 10 days viability study, LAB in Omidun remained viable over a period of 10 days. On the first day, modified Omidun had LAB counts of 6.2×10^7 CFU/ml, Ogi alone had 3.5×10^9 cfu/ml and refrigerated Omidun had 1.0×10^8 cfu/ml. Maximum counts were recorded on the fifth day as 2.4×10^9 cfu/ml and refrigerated Omidun had 7.2×10^9 cfu/ml for raw Ogi and refrigerated Omidun had 2.0×10^6 cfu/ml. Over the fifth day, there was a decline in the counts of LAB in all the three fractions of Ogi used (Fig 2).

Figure SEQ Figure 2: Viability of LAB in modified Omidun, refrigerated Omidun, and Ogi
for 10 days
The effect of freeze-
drying on the viability of
L. pentosus
and
L. paraplantarum
using
Ogi
and milk as cryo-protectants was reported
on
Fig.
3.
Milk is a better cryopreserving agent than
Ogi.
For LAB strains cryopreserved in
Ogi,
there was a 3 log reduction in the
cfu/ml after freeze-drying in both tested strains while for LAB strains cryopreserved in milk, there was only a slight reduction in the
viability of two LAB, from 2.6 x 10^{12}
to 1.1 x 10^{12}
for
L. paraplantarum
and from 2.32 x 10^{12}
to 6 x 10^{11}
for
L. pentosus
In freeze-dried
Ogi,
the reduction in viable cells was four logs
from 5.2 x 10^{9}
to 7.2 x 10^{5}
cfu/ml
(cf.
Fig
3).
Also, the effect of two months
of
storage at room temperature
on
the viability of freeze-
dried
L. pentosus
and
L. paraplantarum
cryopreserved in
Ogi
milk,
and
Ogi
alone
was reported. The viable LAB in
Ogi
alone reduced from 7.2 x 10^{5}
cfu/ml to 1.3 x 10^{2}
cfu
/ml on day 26. There was two log reduction in the viability of L. pentosus cryopreserved with Ogi (not preserved in capsules) between day 1 and day 69 (from 2.77 x 10^8 to 2.9 x 10^6 cfu/ml) while there was a 3-log reduction in the viability of L. paraplantarum cryopreserved with Ogi (not preserved in capsules) (from 3.04 x 10^8 to 1.32 x 10^5 cfu/ml) (cf. Fig. 3).

There was a statistically significant difference in the viability of LAB cryopreserved with milk versus Ogi (p=0.012).

The effect of 3 weeks of capsulation on freeze-dried strains cryopreserved in Ogi was reported. There was a drastic reduction in the viability of Ogi capsulated products at the end of 3 weeks to <10^4 cfu/ml in both strains, thereby leading to discontinuation of the experiment. However, the uncapsulated Ogi freeze-dried L. paraplantarum strain had a three log reduction from 3.04 x 10^8 cfu/ml to 1.62 x 10^5 cfu/ml and a one log reduction for L. pentosus (from 2.77 x 10^8 to 7 x 10^7 cfu/ml) (cf. Fig. 4). The milk capsulated products survived till the 69th day, but at reduced viability.
For milk+ L. paraplantarum, there was a 6 log reduction (from 1.1×10^{12} to 3.7×10^5) and for milk+ L. pentosus, there was a 5 log reduction (from 6×10^{11} to 1×10^6) after 69 days (cf. Fig. 3).

Figure SEQ Figure * ARABIC 3:
Effects of freeze-drying and storage on Lactobacilli strains.

Figure SEQ Figure * ARABIC 4:
Comparison of the viability of Lactobacilli strains in freeze-dried Ogi after three weeks of capsulation and uncapsulation. The antimicrobial effect of modified Omidun against five strains of diarrhoeagenic E. coli was reported. For the control experiments, the E. coli strains either maintain, lower or increased its viability after incubation in saline for 24 h e.g. the log viability of EAEC (3 log s), EHEC (5 log s) and STEC (6 log s) were maintained at 0 and 24 h, EPEC increased from 4 log s to 5 log s, while ETEC reduced from 6 to 5 log count. STEC was the most susceptible E. coli strain as no strain survived in Omidun after 24 hours of incubation. There was a 7 log reduction in ETEC strain, 4 log reduction in EAEC and 2 log reduction in EIEC. Omidun had little effect in reducing EPEC viability (cf. Fig 5).
Figure
SEQ Figure 5

Antimicrobial Effects of Modified Omidan on Diarrheagenic E. coli strains

DISCUSSION
This study reported that scrapping the surface of Ogi and mixing it with Omidan had a higher quantity of viable beneficial LAB in comparison to normal Omidan and freeze-dried Ogi with appropriate anti diarrheagenic E. coli activities thereby implying functional food ability of Ogi.

We also report complete absence of LAB in Ogi after 10 days of milling, but rather a succession of fungi and yeast, thereby suggesting that the shelf life of Ogi is within 10 days if they are to be used as a functional food. Ogi could be consumed strictly as food with no consideration for attendant health benefits. However, if Ogi is to be considered as functional food with special interest in the naturally occurring beneficial bacteria, then, the viability of the bacteria is significant as probiotics, defined as live bacteria which when administered in adequate amount confer health benefits on the host. Therefore, viability of bacteria in functional food constitutes a key consideration. The Ogi slurry used in the current study showed a progressive increase in the LAB population for a duration of 10 days after which there was a succession of fungi with no viable LAB. A repeated experiment confirmed that the viability of LAB in Ogi is only within 10 days. The occurrence of LAB in Omidan was reported by George and Anosike [17/1991], where viable LAB was isolated from Omidan.
and the increase in population of LAB is supported by Afolayan et al. [14] where the LAB growth in the Ogi slurry increased during 48 h of the souring period. However, to the best of our knowledge, this is the first study reporting a 10 days period for detecting viable LAB in Ogi. The counts of LAB in the modified Omidun and Ogi were more than that of refrigerated Omidun with peak viability on the fifth day. This can possibly be attributed to fermentation attaining its peak on the fifth day. Subsequently, there was a decline in the count of LAB since it was assumed that the LAB were the major agents of fermentation. The lower counts of LAB recorded for refrigerated Omidun may have been due to the fact that refrigeration prevented fermentation from occurring. This is in contrast with the results reported by Afolayan et al. [14] who recorded higher counts of LAB in Omidun than in raw Ogi and this may be due to the fact that the Omidun in their study was stored at room temperature which was not the case in this study. There have been reported peak LAB count and after which, there was a decline in the counts of the viable LAB [14, 1]. These findings are indicative of the fact that the normal preparation of Ogi or a mixture of raw Ogi and Omidun contain high quantities of LAB until the fifth day when stored at room temperature and the water is constantly changed. The reduction in LAB counts in Omidun and increase in Ogi slurry can be attributed to the gravitational pull of the LAB from the Omidun to the Ogi surface. Therefore, a modified Omidun used in our study involve the scrapped surface of Ogi mixed with Omidun and it
displays a high count of viable LAB. The modified Omidun viable count was higher than traditional Omidun because it combines viable counts in Omidun with the densely populated surface of Ogi where gravitational force has pulled down the bacteria. Aiming to provide health benefits, it will be essential that there is a minimum of 10^6 cfu g^-1 viable probiotic organisms in a product [14] or 10^7 cfu g^-1 at point of delivery [19]. Therefore, observed high viability of LAB in different components of Ogi is interesting.

In formulating freeze-dried products, the cryoprotectant has to be considered and it is essential that viability is maintained throughout the process of formulation and subsequently throughout its use. During freeze-drying, the cells are exposed to an extreme temperature that has the ability to damage the cells of the bacteria [20]. Cryoprotectants can then be used in optimizing this process, protect the cells and in the process enhance the viability of the organisms during freeze-drying [20]. As observed in this study, Ogi is not a suitable cryoprotectant during freeze-drying and capsule storage in comparison to using skimmed milk. The LAB, in formulation with milk, possesses a higher survival rate than LAB in Ogi formulation. Ayeni et al. [16]
reported that milk is highly effective in protecting the organisms during freeze drying and enhancing the survival of the organisms during storage. This agrees with the study carried out by Jalali et al. [20] who reported 20% increase in viability of the organisms using 6% skimmed milk and the highest survival after 3 months in capsules that formulation is with sodium ascorbate and trehalose.

Freeze-dried techniques have the advantage of being a process in which bacteria can survive well with the addition of cryoprotectants [16, 20, 21]. Temperature fluctuation is one of the factors that contribute to the survival and activity of LAB in a food sample [2, 2]. The freeze-dried process has the advantage of preserving the LAB for a long time and also reduces the rate of destruction by the gastric acid due to the ease of micro-encapsulating a freeze-dried product. Escherichia coli, which has been implicated as one of the major cause of diarrhea in human s and the major cause of mortality and morbidity in children less than 5 years, has shown multi-resistance to antibiotics. The resistance of diarrhoeagenic E. coli to antibiotic s has been ascribed to the misuse or under-use of antibiotics most especially ampicillin, chloramphenicol and sulphonamethoxazole-trimetoprim [2, 3, 4]. Fermented foods can have an inhibitory effect on the diarrhoeagenic E. coli which could be due to different mechanism s of action of the LAB present in the fermented food [5...
These inhibit the growth of the pathogenic organism and the inhibitory effect is supported by a decrease in pH hence increase in acidity of the environment. From the co-culture experiment, there was reduction in the viable count of the selected diarrhoeagenic E. coli strain after 24 h of contact time. Interestingly, after 24 h, STEC LLH74B was entirely inhibited and drastic inhibition was observed with the other diarrhoeagenic E. coli strains. Afolayan and Ayeni also observed a decrease in the count of E. coli strain EKT 004 after a co-culture with LAB isolated from Ogi with more inhibitory activity of LAB against E. coli strain EKT 004 when compared with the activity of conventional antibiotics. These reports demonstrate antimicrobial activity of LAB in fermented food, especially Omidun which in turn suggests that this group of bacteria is able to confer health benefits on individuals consuming them. It may, therefore, be important to encourage the use of a mixture of Omidun and raw Ogi or raw Ogi for better results. The observed activities could be due to inhibitory compounds produced by lactobacilli e.g. organic acids, diacetyl, hydrogen peroxide, nisin, lactic acid and bacteriocins. George and Anosike also isolated three LAB from Omidun and showed their antimicrobial effect on some test microorganisms and Ayeni and Ayeni, reported that inoculated enteric pathogen was inhibited by LAB after 24 h of contact time. Furthermore, the decrease in the pH contributes to the inhibitory effect of the Omidun on E. coli.
here was a drastic change in the pH value with a decrease from 4.06 to 2.90, hence an increase in acidity. This drastic change in pH has been reported [14]. The effectiveness of Lactobacillus species against enteropathogenic bacteria has been reported [3, 0, 3].

Interestingly, Omidun doesn’t only have antimicrobial properties, but it offers protection against colitis in a rat model [32]. This further clarifies the medicinal properties of Omidun as reported in our study.

CONCLUSION

The current study provides the scientific proof of the use of Omidun in the local treatment of diarrhoea due to its anti-diarrhoegenic activities. Furthermore, we demonstrated that Ogi and Omidun are best consumed within 10 days of souring for maximal lactic acid bacterial viability and antimicrobial effects. We present a modified Omidun that involves lightly scrapping the surface of Ogi and mixing it with Omidun to get a higher quantity of viable beneficial LAB.

Acknowledgment

We acknowledge Prof. Iruka Okeke of Molecular Microbiology Unit, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria for the provision of diarrhoeagenic E. coli strains used in this study.

REFERENCES

Chelule PK, Mbongwa HP, Carries S, Gqaleni...
N. Lactic acid fermentation improves the quality of
amahewu,
a traditional South African maize-based porridge.
Food Chem.
2010;
122(3):656-61.
doi:10.1016/j.foodchem.2010.03.026
Adeniyi BA, Ayeni FA,
Ogunbanwo
ST. Antagonistic activities of Lactic Acid Bacteria isolated from Nigerian fermented dairy foods against organisms implicated in
Urinary Tract Infection.
Biotechnology
2006;
5(2):
183-8.
doi:10.3923/biotech.2006.183.188
Sunmola
AA, Ogbole
OO, Faleyeye
TOC, Adeniji
JA. Ayeni FA. Antiviral Activities of Supernatant of Fermented Maize (Omidun)
5
Global Research Journal of Microbiology
Available at:
4
Ojo
OE, Sowemimo
A. Ayeni FA. Evaluation of viability of lactic acid bacteria in a Nigerian commercial yogurt
and its antagonistic effects on selected strains of diarrheagenic Escherichia coli.
Nigerian Journal of Pharmaceutical Research
2017;
13(2): 175-80.
Available at:
Okafor, N. Fermented foods and their processing.
Biotechnology
2009;
8:1-10.
Aderiye
BI, Laleye
SA, Odeyemi
AT
Hypolipidemic effect of Lactobacillus and Streptococcus species from some Nigerian fermented foods.
Research Journal of Microbiology
2007;
2(6): 538-44.
doi:10.3923/jm.2007.538.544

doi:10.11604/pamj.2017.27.22.9707

Li XY. Chen XG. Sun ZW. Park HJ, Cha DS. Preparation of alginate/chitosan/carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393 Carbohydr Polym. 2011; 83(4): 1479-85. doi:10.1016/j.carbpol.2010.09.053

George-Okafor UO. Anosike EE. Fermented corn waste liquor as a potential source for probiotic lactic acid bacteria.
c lactic acid bacteria.
HYPERLINK "https://www.ajol.info/index.php/njb/article/view/106795"
Nwachukwu E. Achi OK. Jeeoma IO. Lactic acid bacteria in fermentation of cereals for the production of indigenous Nigerian foods.
Available at:
O memo AM. Fermentation dynamics during production of Ogi, a Nigerian fermented cereal porridge.
HYPERLINK "https://doi.org/10.7537/marsroj030411.02"
doi:10.7537/marsroj030411.02
HYPERLINK "https://doi.org/10.1016/j.foodres.2005.07.007"
doi:10.1016/j.foodres.2005.07.007
Li XY. Chen XG. Sun ZW. Park HJ, Cha DS. Preparation of alginate/chitosan/carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393
Carbohydr Polym . 2011 ; 83(4) : 1479-85.
HYPERLINK "https://doi.org/10.1016/j.carbpol.2010.09.053"
doi:10.1016/j.carbpol.2010.09.053
Available at:
HYPERLINK "http://rps.mui.ac.ir/index.php/jrps/article/view/211"
http://rps.mui.ac.ir/index.php/jrps/article/view/211
Saarela MI.
Alakomi V. Stability and functionality of freeze-dried probiotic...
Bifidobacterium cells during storage in juice and milk.
International Dairy Journal
2006;
16:1477–82.

Rivera-Espinoza, Y. Gallardo-Navarro, Y. Non-dairy probiotic products.
Food Microbiology
2010;

The American Journal of Tropical Medicine and Hygiene
2019;
100(6):1363-8.

Antimicrob Agents Chemother
2005;

Afolayan AO, Adetoye A Ayeni F.A. Antagonistic effects of three lactic acid bacterial strains isolated from Nigerian indigenous fermented Ogi on E. coli EKT004 in co-culture.
Acta Alimentaria
2017;

Ayeni AO, Ayeni FA. Antagonistic effects of lactic and acetic acid bacteria on Shigella sp. SS10 in co-culture. TAF Preventive Medicine Bulletin. 2016; 15(1).

Cite this article as:
Kwasi RE
Aremu IG, Dosunmu QO, Ayeni FA
Viability of Lactic Acid Bacteria in Different Components of Ogi with Anti diarrhoeagenic E. coli Activities
https://doi.org/10.5281/zenodo.3560326

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 The Authors. The North African Journal of Food and Nutrition Research.
Derardja & Barkat: T raditional sun-drying and oven-drying effects on carotenoids and phenolic compounds of apricot

Kwasi et al.: Viability counts and antimicrobial properties of Ogi

Kwasi et al.: Viability counts and antimicrobial properties of Ogi

Log CFU/mL
<table>
<thead>
<tr>
<th></th>
<th>Before freeze drying</th>
<th></th>
<th>After freeze drying</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L. paraplantarum in Ogi</td>
<td>11.84</td>
<td>L. paraplantarum in Ogi</td>
<td>11.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. pentosus in Ogi</td>
<td>9.72</td>
<td>L. pentosus in Ogi</td>
<td>12.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ogi</td>
<td>12.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. paraplantarum in milk</td>
<td>11.84</td>
<td>L. paraplantarum in milk</td>
<td>8.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. pentosus in milk</td>
<td>8.44</td>
<td>L. pentosus in milk</td>
<td>8.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.86</td>
<td></td>
<td>5.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.04</td>
<td></td>
<td>2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.78</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General</td>
<td></td>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.12</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.46</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.57</td>
<td></td>
<td>5.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log CFU/mL

Day 26

Day 69

Sheet1!A10:A14

L. paraplantarum in Ogi
L. pentosus in Ogi
Ogi
L. paraplantarum in milk
L. pentosus in milk

Sheet1!B10:B14

General

11.84
11.81
9.72
12.41
12.37

Sheet1!C10:C14

L. paraplantarum in Ogi
L. pentosus in Ogi
Ogi
L. paraplantarum in milk
L. pentosus in milk

After freeze drying

Sheet1!D10:D14

L. paraplantarum in Ogi
L. pentosus in Ogi
Ogi
L. paraplantarum in milk
L. pentosus in milk

Day 26

Sheet1!E10:E14

L. paraplantarum in Ogi
L. pentosus in Ogi
Ogi
L. paraplantarum in milk
L. pentosus in milk

Day 69

The table above presents the Log CFU/mL counts before and after freeze drying for Lactobacillus paraplantarum and Lactobacillus pentosus in Ogi and milk. The counts are given for different days after processing.
<table>
<thead>
<tr>
<th>E.coli strains</th>
<th>Log of CFU/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETEC</td>
<td>9.8</td>
</tr>
<tr>
<td>EPEC</td>
<td>7.53</td>
</tr>
<tr>
<td>STEC</td>
<td>5.5</td>
</tr>
<tr>
<td>EIEC</td>
<td>7.6</td>
</tr>
<tr>
<td>EAEC</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Sheet1!C1: 24hrs
Sheet1!A2:A6: ETEC, EPEC, STEC, EIEC, EAEC
Sheet1!C2:C6: General, 2.8, 7.1, 5, 5.4, 5.5

file:///G:/1st%20Partition/My%20Activities/Editing/The%20NAJFNR/Submitted%20Materials/1.pdf